6. Quantum nanostructures
6.3 Doped QDs



Topics of this lecture

* Doping of colloidal QDs
* New optical properties induced by doping
* Case study: the presence of copper in Cu*:CdSe and CulnS,
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Doping
* 1940s: Intentional insertion of impurity atoms into a crystal - basis for the widespread
application of SCs in electronic and electro-optic components
* Doping of quantum dots: additional tuning parameters on top of size effects
e But...From the synthesis side, the introduction of a few impurity atoms into a
nanocrystal that contains only a few hundred atoms may lead to their expulsion to
the surface or compromise the crystal structure!

Possible strategies:

1) Remote doping, through the use of binding ligands on the nanoparticle surface (which
can donate carriers)

2) The introduction of dopant precursors at specific stages of nanoparticle growth
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Doping in QDs
Vlaskin et al., JACS 2013, 135, 14380-14389
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e Dopants must compete with host cations * Optimize the concentrations of dopants
for available surface binding sites and to host atoms (not in growth conditions
nanocrystal surfaces must compete against anymorel!)

surfactant ligands for impurity binding
* Dopants are internalized via diffusion

* These surface competition reactions through the crystal ions
typically disfavor doping
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Doping in QDs

* Adding a single impurity atom to a QD with a diameter of 4 nm (~ 1000 atoms) leads to a
nominal doping level of 7 x 101° cm=3

* In a bulk SC this is already well within the heavily doped limit, where metallic
(“degenerate”) behaviour is expected

* The impurities interact with each other and an impurity sub-band emerges near the edge
of the respective band

» Often, tail states (Urbach tails) also develop as a result of distortions in the crystal
structure and E; is narrowed
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The Moss-Burstein shift

Mocatta et al., Science, 2011, 332, 77-81

Conduction Band
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 The absorption is blue-shifted as a result of PL
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* The emission emanating from the bottom of the
CB is red-shifted
p-type: DOS DOS

* Red shift of both abs and PL
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Example: Doped InAs QDs

For low amount of dopant atoms, no

metal regions are detectable by TEM Cu doping Ag doping

- The impurity atoms are dispersed Au doping: No shift observed
_ | . .
o
- (@]
D | |
o 900 1000 1100 1200
Wavelength
| |
600 800 1000 1200 1400

Wavelength (nm)

Mocatta et al., Science, 2011, 332, 77-81

The three impurities lead to qualitatively different effects on the optical spectra and
hence on the electronic properties of the doped NCs



Case study:

Copper-containing nanocrystals
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Copper phosphors (bulk SC)

s,

»*

http://www.johngineer.com/blog/?p=648

Luminophore —) ZnS doped with Cu, Al
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Copper phosphors (bulk SC)

Knowles et al., Chem. Rev. 2016, 116, 10820-10851

e The specific luminescence feature that is
observed depends primarily on the ratio of A
activator (Cu*) to charge-compensating
coactivator (e.g., AlI**) ions

Bulk Cu*,Al**:ZnS

* Both are randomly distributed over
substitutional lattice sites

e Strong electron-phonon coupling makes the PL

much broader than the host’s band-edge CB
emission ?g* AP + e g
A TAVAYAVAYS
* |n addition, different intrapair distances or 1 hv
donor-electron binding energies causes further Fo-Cu’
inhomogeneity in both the luminescence [+ 2

"
~

bandshape and the luminescence decay time "

PL can exceed minutes in bulk and is responsible for the characteristic afterglow!
What happens when we move to the nanoscale?
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Copper-containing nanocrystals
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- Very broad PL

Knowles et al., Chem. Rev. 2016, 116, 10820-10851
Knowles et al., J. Am. Chem. Soc. 2015, 137, 13138-13147.

e Large shift between absorption
edge and PL: Stokes shift

* Reabsorption of PL in the material
is minimized: Good for lasers and
luminescent solar concentrators
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Single-particle photoluminescence

Cu+-Doped
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Whitham et al., Nano Lett. 2015 15 (6), 4045-4051

+.
Cu™:CdSe  The broad PL is an intrinsic property of
T such systems and is not due to a large
Q Al size distribution!
= Ensemble 5
g % At 0.6% Cu*, the average number of
< < Cu*/NC is about two
' A
Ex B A Poissonian distribution of Cu* among
Undoped the ensemble of nanocrystals results in
5 ~14% of the NCs possessing no copper
< FWHM ~ 54 meV
%’ Distribution of energies of Cu* levels
g | Cu C due to differences in local
f FWHM ~ environments, especially at the
o 325 meV interface + distortion around Cu* (Jahn-
Teller effect, mechanism of symmetry

breaking)
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Single-particle photoluminescence

Knowles et al., JACS, 2015, 137, 13138-13147

CulnS,/CdS

Data: Courtesy of P. Whitham
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* The broad PL is an intrinsic property of such e Likely involves Jahn-Teller
systems and is not due to a large size effect, which is particularly
distribution! strong for Cu?*
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Why is a broad PL interesting?

Luminescent Solar Concentrators

Luminophore Polymer/glass waveguide

Bradshaw, Knowles, McDowall, Gamelin, Nano Lett. 2015, 15, 1315-1323

* Strong, broad absorption throughout the solar spectrum
* High quantum yield, photostable
© Ep>E,

* No reabsorption (minimum overlap between absorption and PL spectra)
14



Why is a broad PL interesting?

In Vivo
Imaging

Chen, Zhong, Wang, Liu, Zou, Nanoscale 2013, 5, 3514-
3519.
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White LEDs
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Delayed luminescence in Cu*:CdSe
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What do we expect for other NCs?

Cu*:CdSe
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Marchioro, Whitham, Knowles, Kilburn, Reid, Gamelin, J. Phys. Chem. C, 2016, 120, 27040 17
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Delayed luminescence is

everywhere!
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 Measured by TCSPC
e Different materials show remarkably similar dynamics
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Is DL due to detrapping ?
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Is DL due to detrapping ?
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MCPL shows decay
from original emissive state
2
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T-(in)dependence

* Broadly distributed kinetics mostly e Variation of DL lifetimes follows variations
independent of T (parallel decays) of prompt lifetimes
- The probability of populating the DL state
directly depends on the prompt lifetime
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Is this a tunneling process? 25



Tunneling Model

Energy

Prompt
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Delayed
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Summary

* Doping is an additional way to tune the already exceptional properties of QD!!

* Modifies the optical properties, the magnetic properties, etc...
Ex: Mn?* doping and “excitonic magnetic polarons”

e hv FTp. energy EMP
Exchange field between exciton and dopant: _x'\/ Iy ‘,*‘\/ gam l
—> Effective magnetic field experienced /"( S v By e I
by the dopants -
9 Write magnetic memories with Iight.’ More in: Beaulac et al., Science 2009, 325, 973-976

Delayed luminescence is the NC-equivalent of the “green afterglow” seen in toys and
oscilloscopes, for example!

* Observed in many different NCs and longer in copper-doped and copper-based systems

* Areversible charge trapping-detrapping process where the delayed photon originates
from the same state as the prompt photon

* Temperature independent and reflects a tunneling process



